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Anvoranusi—B cTaThe NOKA3AHO, YTO OCHOBHHE YDAaBHeHMA CTpyHHOI TepMOrasofuHaMuKN

MOKHO BHIBeCTHM u3 ofmero Oajanca

aiass mobolt  PUSHKO-MEXaHMYECKOR BEIHUNHEL.

OcHOBHHE YPaBHEHUA CTpYHHOrO [IBHMEHMA CIeYIOT U3 BAKOHOB MAcC, MOJHHX SHeprait u
HepBOTO BAKOHA TEPMOIMHAMUKE. JTH YPaBHEHUA HOBBOJIANT TAKKE HOJYYHTH OJHOMEDHOE
yPaBHeHUE TeNONPOBOSHOCTH M MATHUTHON razso[uHaMUuKy.
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NOMENCLATURE
streamline co-ordinate;
time;
extensive mechanophysical value;
increase;
volume;
cross section;
specific  extensive
values;
perimeter of the cross section;
internal specific surface exchange;
specific internal release;
density;
flow rate through the cross section;
specific characteristic of non-convective
exchange;
mass-flow;
specific internal energy;
specific heat flow;
pressure;
specific enthalpy;
absolute temperature;
thermal conductivity;
specific external heat;
specific external work;
shear stress;
specific entropy;
specific volume;
current density;
conductivity;
magnetic induction;
magnetic permeability ;
height;
width;
voltage drop in the external circuit;

mechanophysical

¢ specific kinetic energy;

Cp,  specific heat;

K, ratio of specific heats;

R, characteristic constant for a gas.

1. THE GENERAL BALANCE EQUATION
CompARISON of all the equations governing the
processes of stream gas dynamics makes it
possible to reduce them to a single general
balance equation which determines the distribu-
tion along the stream and the change in time of
any generalized value.

A number of assumptions are necessary for
deriving this equation which, on the one hand,
are based on the concept of a streamlined
motion and, on the other hand, generalize the
laws characterizing the processes accompanying
this motion.

The former assumptions are the following:
continuity of distribution along the stream and
change in time of all the specific and characteris-
tic values, their dependence only upon the
curvilinear co-ordinate / of a curvilinear axis of
the stream and upon the time z.

The laws of external and internal convective
and non-convective exchanges, internal releases
and absorptions, etc. relate to the latter group
of assumptions, From the continuity condition
it should be assumed that in general the cor-
responding values would be proportional either
to volume elements (volume releases, work, etc.)
or to time elements. Then the corresponding
proportionality coefficient would be in general
the known functions of the curvilinear co-
ordinate, time, mechanophysical parameters, etc.
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476 K. 1.

While deriving the general balance equation of
any value we shall also proceed from such
cvident equations and relations.

Any value of 4.) corresponding to the stream
elements 4V — FAl may be determined by the
relation at the given moment

A.’) - 31‘,AV —_— 31:FA[ (l])

where 3, is the density of a given value in the
volume 4V which will be referred to as a
specific value as well. In general 5, depends on /
and ¢ directly or through any mechanophysical
parameters. In (1.1) F represents the useful
section of a stream in a considered place at a
given moment. In general F is a function of
[ and t. Tt should be noted that the curvilinear
axis of a stream will be considered immovable,
i.e. a stream may pulsate in time but its axis may
not change.

Consider the change of 49 for the time element
dr at / = const. From equation (1.1) we have

) ,
dan = g = 2
at ¢t

(1.2)
when differentiating with respect to ¢ in par-
ticular.

Such a change of 47 should be obviously the
consequence of various physical processes and
mechanical motions taking place both in the
interior of the volume 4V and on its front
surfaces F and F’ and on the lateral surfaces
AF; = xdl where x is a perimeter of the cor-
responding useful section. Besides, changes of
A7) should be associated with these processes
and motions. All the phenomena occurring on
the above surfaces and associated with the
changes of 45 may be considered as transfer
phenomena through these surfaces for the
time dz. Continuing in this way, these phenomena
may be expressed by values, proportional to the
corresponding surfaces and the element dz:

vFde; yF'dr; pixydide

where 17 and 3’ are internal specific surface
exchanges on the surfaces F and F’ of the
element 4V and y; is an internal specific surface
exchange on its lateral surface. Hence the total

surface exchange for dz will be
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PFdt — Y Fdt - pidl dt

orl
( ol
Volume releases in the interior of 4V will be

presented on the same basis by the expression

apdV = aptdl dr. (1.4

T Arde (L3

Considering a continuous stream we have no
other conditions which influence the change of
459 for the time dz. Then from the balance con-
dition of all the mentioned values we shall have a
general balance equation:

oaF | &yF

car T oal
after equating (1.2) with the sum of (}1.3) and
(1.4) and reduction by 4/d:. Equation (1.5)
relates the change with the time of the distribu-
tion density of 7 along the stream and the change
of internal surface exchange to volume release
and external exchange along the co-ordinate
in the given section of the stream at a given
moment.

Introduction of s, representing the specific
distribution of J over the mass, instead of s,
seems to be more convenient in some applica-
tions. 1t is evident that s, and » will be related by

(1.6)

where p is the density in the volume element .
Then under the same conditions external and
internal exchanges are convenient to be expressed
as sums consisting of convective and non-con-
vective elements of these exchanges.

Convective elements will be proportional to
flow rates through these surfaces and to densities
of the value being considered, i.c.

= ak i iy (1.5)

Fp == P3

".. . 31’(' ‘E* :’ ,“‘l - - 7][(‘[ -r jl ('7)

where

¢ and ¢; are flow rates through Fand 4F;;

2y and ; are corresponding densities of /):

# and 7, are specific second characteristics of
non-convective contributions to exchange.

In view of the said above after substituting
(1.6) and (1.7) into equation (1.5) and intro-
ducing the mass rate through section F by the
formula

- pcF (1.8)
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we obtain
ds 1 ozF s [0pF om
dr ToF @ T ﬁ(Tt - 57)
o TEX (19
where
d . 0 0
G- at

is a substantial derivative sign.

It should be noted that if 2, or 5 does not
possess convective transfer, then expansion of
(1.7) as well as (1.6) should not be used and,
consequently, balance equation (1.9) is not
suitable for such quantities.

2. GENERAL EQUATION OF GAS DYNAMICS
OF STREAMLINE MOTION

According to (1.5) and (1.9) we may obtain
fundamental equations of stream thermal gas
dynamics by corresponding choice of 5, and y or
2 and Z,

(a) Really, considering distribution and change
of masses along the stream at 3, = p and assum-
ing in this case absence of non-convective
exchanges (z = Z; = 0), we obtain from equa-
tions (1.6) and (1.7)

=1,

@2.n

where p; is the density of external convective
exchange and g, is the specific mass rate of
internal release. Using these assumptions we get
from (1.9)

apF  om .
W—‘_@’l = poF + picix

Y = pc, Y1 = pict, Gy = Py

22

after multiplication by pF.

This is a generalized equation of continuity or
mass rates for streamline motion (the law of
mass conservation).

In case of absence of release and external
exchange we transform equation (2.2) into the
conventional continuity equation of one-dimen-
sional gas dynamics [1]

2pF  om

o Ta =0

(2.3)
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By means of the substantial derivative the latter
equation may be also expressed as follows:

dm m oc oe

da e a Py (2.32)

(b) Assuming » to be equal to the sum of
specific kinetic and specific inner energies of a
gas, i.e.

c2

=3 +u 2.4

and internal non-convective exchange to be
equal to the sum of conductive heat transfer
and specific power of pressure forces

Z =q + pc. (2.5)
Using (2.2) we obtain from (1.9)
di* _1op 1 8gF  ap— i*py
G pF AT
m — i*piey X péinF
R~ eY)
where the stagnation enthalpy is equal to
c? 2 J/ p
* __ ] — — - = —
—2+z 2—|—u+P 3—{-p. 2.7

Equation (2.6) is none other than generaliza-
tion of the equation for stagnation enthalpy
(the law of conservation of mechanocaloric
energy) known in gas dynamics [1] which in its
turn, is obtained from equation (2.6) without
external and internal exchange and release at
pr=g=dp=0; Zy=m,=0, ¢ =0.
Under these conditions we have

di* ] dp polnF

dt pot T p ot (2.8)
For stationary motion
2
di* =0, ori*= % -+ i = const. 2.9)

This is the law of stagnation enthalpy conserva-
tion along the whole length of a stream when the
process is stationary without external heat
transfer and internal volume release.

In the considered general case from equation
(2.6) we may assume

f‘g_h., M e PL_ (02+
— Tty : [ )
P

Pl
; — (2.1
P P et )P 219)
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External non-convective exchange may be
represented as a sum of thermal and energy
exchanges according to

Z .
Pl . ;{ =~ fex + Hpz. (2-11)
Internal exchange is defined by the Fourier law
eT
g = — /\5/. (2.12)

Substituting these expressions into (2.6) we
obtain the following relation

di* | op I o/ o " pr
= e AT R
dt " p bt T pF bl()‘F o ) R
. piin F
“+‘(1l bl ) p F+ Qe,r + Hex f’ P%j (7 13)

In case of stationary motion equation (2.13) is
simplified

di* 1.d '}\ drmy dhj i* dpy
di T d‘/( df)+ T dl
e P X e dHe
- ’)p(' oyt (2.14)
at d/ = ¢ dr, where
H,
dgez = e df = (131 dl; dHer = *’i d/;
dpg::f’g dl. (215

Thus, with stationary streamline motion the
whole stagnation enthalpy of a gas will change
along the stream because of the following cir-
cumstances: internal heat conduction of a gas,
heat release in chemical conversions, external
non-convective heat and energy transfer and
external convective exchange. Thus, for example,
for unifiow combustion chambers with con-
tinuous secondary air supply and fuel com-
bustion at dH,; = 0 (absence of external energy
transfer), equation (2.4) presents the total
balance of mechanocaloric energy, external
exchange and internal release.

(¢) Note another Iinteresting particular
transformation of the equations obtained in
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together V

dr* b ep p cF  dm <
; o : S opF L {2.16)
dt  p et pF er dr 't

Multiply the first equation by #:. the second one

by i* and sum them up. Then after some simple

transformations we get

dJ* o gp clne
- i) - on 217

where J* . pi* is the stagnation enthalpy flow.

(d) Now consider the purely thermodynamic
quantity i.e. inner energy, assuming 3 = wu. In
this case. besides specific volume release, .
includes the work of expansion of the initial
volume. Dwell upon this work at greater length.
It is evident that the change of the volume on
the front surfaces F and F’ for the time dr may
be determined by

av' - d¥ = F'dl' — Fdl

.
—Fodi = T aran

= (F”(" &/
Thus the external work of expansion will be
equal to

F.
P (); A7 dr (with an inverse sign).

Further. volume heat release occurs because of
both chemical and other internal conversions
and of the work of friction. The latter may be
represented by

ohydl At == 7,0xdl dr (2.18)
where 7, is the shear stress on the lateral surface
of the stream. In this case the specific value of
chemical conversion energy would not contain
evident kinetic energy of this conversion. Thus,
it is equal to

hvu = i]: - 1:1(-. (2,]9)
Then from the above we obtain

oF,
oAV dt = phudV dt 4 Tecxdldr — p -glfdf dr
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which after reducing by 4¥ dr and rearranging,
results in

_ 8lnF 4

—~§ py — P pict X+ TeC % X (2.20)

Other quantities entering equation (2.6) will be
equal to Z = g (conductive heat transfer),
n = pe (specific enthalpy of external convec-
tion) and 2 (x/F) = dezp (external convective
heat transfer). After substituting all these

expressions in (1.9), with regard to (2.2) and
after reduction by p, we find

poélnF 1 &gF
T p &  pF al

du dv

FIRPT i

=) 0 Gt e 220)
The obtained equation relates the change of the
inner energy and the specific power of gas ex-
pansion work to all the forms of heat transported
in algebraic sense to the element 4V for the time
dt with local change of the volume energy in
this element (the first law of thermodynamics).
When there is no external convection and when
q = —AX (éT/al), this equation is simplified
according to the Fourier law and takes the form
of

du do 1 @ oT
a TP a =k éi(”’é?)
éInF

+hu+hr+4m+* T

(2.22)
The latter equation yields the well-known

equation of one-dimensional heat conduction

dr
dr — pCp @

A T

e -+ hu -+ hr + Qew (2-23)

when F and V == const. and u = cT.
(e) If, instead of specific inner energy, the
enthalpy

i=u % (2.24)
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is introduced into equation (2.21), the latter is
reduced to

di_1dp polnF
dt  p dt ; ot

1 agF
oF "ol

PL X

+(iy — z) — = + hr + Gez. (2.25)

thy— i
Thus we obtain a generahzed equation of the
first law of thermodynamics for enthalpy in a
streamline gas fiow. Subtracting (2.25) from
(2.13) and assuming the difference of stagnation
enthalpy and thermodynamic enthalpy to be
equal to the specific kinetic energy, we get

dfey 1dp 19 e po
dz(2)+}§?ﬂ sath—37,
2 .
-+ (‘i ——2*) %g €t %—‘ i'lr + Hez. (2.26)

The obtained equation is none other than a
generalized balance equation of mechanical
energy and to obtain this equation as well
as equation (2.25), new determinations of
quantities, entering the basic balance equation,
are not necessary. Thus, the two equations follow
from (2.2), (2.13) and (2.21). In other words, the
law of mechanical energy balance is a direct
result of the laws for balance of masses, mechano-
caloric energy and inner energy, i.e. it follows
from the mass and total energy conservation law
and the first law of thermodynamics for gases.

It is easy to see that when external convective
exchange and inner release are absent, the known
generalized Lagrange-Bernoulli equation arises
from equation (2.26) which after introduction

h
dhy = by dt = i dl; dHe = HT” dl 227
takes the form of

dp 1
( )+ by = 2 4t + dHe. (228)

This equality may be integrated and reduced to

2 . 2 D
Hp=5T"50 [ (2.29)
4 Py

2

provided that motion is stationary.

4
2t b
P
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(f) As the third result of the obtained equa-
tions, deduce the equation for specific entropy
determined by the equalities

Tds--du |- pdr = di (2.30)
Then from (2.21) and (2.25) it follows that

1 qu Pz
,;F o e T

vdp.

ds péolnF
dt p o

+(3f”l) — 7 ‘f‘kn+€3m (2.31)
Equation (2.31) shows that its right side may be
transformed into zero by special choice of values.
We are naturally interested not in this specially
chosen case ds == 0, but in general conditions
when ds = 0. Therefore we exclude all the terms
of external convective exchange and inner
release from (2.31). Then, assume ¢ to be
determined by the Fourier law. Under these
conditions equation (2.31) may be represented
as:

ds A/t eme h 1 ogxer
dt ~p\T az) *7*;%7(?‘@1
AdT einF p 0lnF  gex

_+,

CeT @ el U T @t T (2.32)

The latter equation shows that when external
and internal conductive heat exchanges are
absent (A = 0, ez == 0) and when motion is
statlonary (ds/dt) (hy/T) >> 0 or when a
stream is thermally 1nsulated and there is no
heat conduction, specific entropy of any gas
element of a stationary stream increases with
time, and if internal friction forces are also
absent, entropy remains constant (the second
law of thermodynamics). If these conditions are
not observed, internal friction (dissipative func-
tion of friction) and internal heat conduction
(dissipative function of heat conduction) always
produce two terms in the right side of equation
(2.32).

3. SOME SPECIFIC EQUATIONS OF STREAM
GAS DYNAMICS FOLLOWING FROM GENERAL
EQUATION

Consider a stationary linear flow of a neutral
conducting gas in a direct magnetic field normal
to the flow. In this case the value of internal
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release [in the fundamental equation (2.6)]
would include Joule heat and Lorenz force work.
Thus, for the stream element assumed to be
flat, with cross section F —~ bh where b is the
constant width of the stream and £ is the height,
dependent on the co-ordinate / - x (the rect-
linear axis of the stream), we find

apdV di .
;2
I~ hbAl dt — jBcbhAl dt +- ph',FAL dr

for internal release.

Hence
72 -
i == JBe 1 ph, {3.H
where j is the current density. o is the con-
ductivity, B is the magnetic induction equal to
the product of magnetic permeability ¢ and the
magnetic field strength H. Substituting (3.1)

into (2.6) we get

c}g* o 1 0qh A+ },2 . W,{{C -+ k* % Pl
dr ph ax po p p
2 2 2
IR T L 2 R
| p.hql(l[ z) C’l (3.2)
or when df == (dx/c)and g = - A(eT/ox)
d /2 A& oT
P — 47 g P— -
dx ( 2 ’) pch " Ox (M‘ m)
e / _/ , ! "* v f)"
1 p(’ ( o P«HC) ‘i‘ (‘ (h” I p )
. 2,0!(’1 dQe;r dHer
iy — %) - b 3
PO =5 o T oae 7 dn (3-3)

Continuity equation (2.2) and the equation of
mechanical energy balance (2.26) should be
added to this equation. Then it takes the form of

d /& N 1 dpﬁw dhr  wiH
'&1?(_:2') Teodx T dx

. ('2 'O.q)‘ 1 ('12 — C2 ptCrox dHef
e G rb)~(,+ A

3.4

when Lorenz forces are taken into account. A
relation of the current density, velocity and
magnetic induction, that will be determined by
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the problem conditions, should be added to
the above equations. For instance [2]
j = 4 (cBh — Ver) (3:5)
is assumed for a magnetic nozzle where Ve is
the constant voltage drop in the external circuit.
In the particular case when all the exchanges
and releases, except electrical magnetic ones, are
absent and when friction forces are neglected,
the above equations for ideal gas are reduced to
such a set of equations at ¢ = (¢%/2)

di (B Ve
BEZKJ(Z*W)’

dfsz(K—l Ves B)

Vex
j=oB [\/(25) - i?(/72§)}’

c? K—1
m = ph \/(2§)=const.,§:~2,p= x P

(3.6)

This set relates seven quantities p, p, &, i, jand B
which depend on x in the general case. Thus, for
complete certainty two equations more should
be added or two values should be restricted by
certain conditions of their change along the
X-axis.

From these equations an expression for en-
tropy change is easily obtained

dS ] B Vea:
=T (’; - Tn) G-
and for pressure change
dp , B Vez
Fi (K — 1)j (; — W) (3.8)
From (3.7) and (3.6) we find that
ds 1 Cp R

di~ KT~ Ki (K— 1)
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which after integrating vields

R
S =50+ >~ In ;« (3.9)
1]

K—1
On the other hand, entropy for an ideal gas is
given by the following equation, [1]:

R T - &-1
s =sp+ F:T(ln T_o) +1n (ﬁ) . (3.10)

Comparison of (3.9) and (3.10) obtains such a
relation between i and p

i i (p)”(K‘l)
iy o \ po

which is possible only at p = p, = const., i.e.
when the process is isobaric.

All the above shows that fundamental
equations and consequences of stream gas
dynamics would be derivable from the general
balance equation for any mechanophysical
value. If the present approach is assumed,
fundamental equations follow from mass laws,
total energies and the first law of thermo-
dynamics or, in other words, the general case of
one dimensional stream seems to be possible to
expound without using the conventional equa-
tion of hydrodynamics and Newton laws. These
equations allow one to obtain the one-dimen-
sional equation of heat conduction and magnetic
gas dynamics.
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Abstract—TIt is shown in the paper that fundamental equations of stream gas dynamics may be derived

from the general balance equation for any mechanophysical value. Fundamental equations follow

from mass laws, total energies and the first law of thermodynamics. These equations make it possible
to obtain a one-dimensional equation of heat conduction and magnetic gas dynamics.

Résumé—On montre dans cet article que les équation fondamentales de la dynamique des écoulements
gazeux peuvent €tre déduites de 1’équation générale d’équilibre pour toute valeur mécanophysique.
Les équations fondamentales sont établies & partir des lois de conservation de la masse, de 1'énergie
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et du premier principe de thermodynamique. Ces équations permettent d’obtenir une équation
unidimensionnelie pour la conduction thermique et la magnétohydrodynamique.

Zusammenfassung—In der Arbeit wird dargelegt, dass aus der allgemeinen Gleichgewichtsbeziehung

fiir beliebige mechanisch-physikalische Werte grundsétziiche Gleichungen der Gasdynamik abgelei.et

werden konnen., Grundgleichungen ergeben sich aus den Beziehungen fiir Masse und Gesamtenergie

sowie dem ersten Hauptsatz der Thermodynamik. Diese Beziehungen fiihren auf eine eindimensionale
Gleichung fiir Wirmeleitung und Magnetogasdynamik.



