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Aarro~aqm-B CTaTbe IloK33aHO,YTO OCHOBHIJO ypaBHeHHS CTpy&tIOil TepMOP33oAHHaMKKH 

MOSHO BbIBWTH E13 o6lyero 6ajIaECa $$J&? mo6oi ~~3KKO-M~XaH~qeCKO~ BO~~Iq~K~. 

OCHOBH~eypaBHeH~~ CTpy~OrO ~B~~~eHK~ C~e~y~T 13 3aKOHOB Ma% IIOJIHMX %epf%%@kI 

xex)Boro 3aKoHaTepMo~~KaM~K~. 3Tkf ypaBKeKiMrra03~0n~~TTarrme noary4KTb OmIomepKoe 

ypaBHCHaeTerI,?OnpOBd~HOCTII II MWHlfTHOti ra30JWiHaMHKM. 

NOMENCLATURE 

streamline co-ordinate; 
time ; 
extensive mechanophysical value; 
increase ; 
volume ; 
cross section; 
specific extensive mec~anophysi~al 
values ; 
perimeter of the cross section; 
internal specific surface exchange; 
specific internal release ; 
density; 
flow rate through the cross section; 
specific characteristic of non-convective 
exchange ; 
mass-flow ; 
specific internal energy; 
specific heat flow; 
pressure ; 
specific enthalpy; 
absolute temperature; 
thermal conductivity; 
specific external heat; 
specific external work ; 
shear stress; 
specific entropy; 
specific volume ; 
current density; 
conductivity; 
magnetic induction; 
magnetic permeability; 
height ; 
width; 
voltage drop in the external circuit; 

6 specific kinetic energy; 
C 
KY 

specific heat ; 
ratio of specific heats; 

R characteristic constant for a gas. 

1. THE GJZNERAL BALANCE EQUATION 

COMPARISON of all the equations governing the 
processes of stream gas dynamics makes it 
possible to reduce them to a single general 
balance equation which determines the distribu- 
tion along the stream and the change in time of 
any generalized value, 

A number of assumptions are necessary for 
deriving this equation which, on the one hand, 
are based on the concept of a streamlined 
motion and, on the other hand, generalize the 
laws characterizing the processes accompanying 
this motion. 

The former assumptions are the following: 
continuity of distribution along the stream and 
change in time of all the specific and characteris- 
tic values, their dependence only upon the 
curvilinear co-ordinate I of a curvilinear axis of 
the stream and upon the time t. 

The laws of external and internal convective 
and non-convective exchanges, internal releases 
and absorptions, etc. relate to the latter group 
of assumptions. From the continuity condition 
it should be assumed that in general the cor- 
responding values would be proportional either 
to volume elements (volume releases, work, etc.) 
or to time elements. Then the corresponding 
proportionality coefficient would be in general 
the known functions of the curvilinear co- 
ordinate, time, mechanophysical parameters, etc. 
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While deriving the general balance equation of 
any value we shall also proceed from such 
evident equations and relations. 

Any value of d:) corresponding to the stream 
elements d L’ ~~ FA/ may be determined by the 
relation at the given moment 

Ail.‘) = 3?>AV -- srFAl (1.1) 

where jv is the density of a given value in the 
volume LIP’ which will be referred to as a 
specific value as well. In general 3v depends on I 
and t directly or through any mechanophysical 
parameters. In (1 .I) F represents the useful 
section of a stream in a considered place at a 
given moment. In general F is a function of 
I and 1. It should be noted that the curvilinear 
axis of a stream will be considered immovable, 
i.e. a stream may pulsate in time but its axis may 
not change. 

Consider the change of A3 for the time element 
dt at I = const. From equation (1.1) we have 

when differentiating with respect to t in par- 
ticular. 

Such a change of A3 should be obviously the 
consequence of various physical processes and 
mechanical motions taking place both in the 
interior of the volume AV and on its front 
surfaces F and F’ and on the lateral surfaces 
3Fi -m xAl where x is a perimeter of the cor- 
responding useful section. Besides, changes of 
AI) should be associated with these processes 
and motions. All the phenomena occurring on 
the above surfaces and associated with the 
changes of A3 may be considered as transfer 
phenomena through these surfaces for the 
time dt. Continuing in this way, these phenomena 
may be expressed by values, proportional to the 
corresponding surfaces and the element dt: 

PFdt; _$‘F’dt; .hxAldt 

where p and _f’ are internal specific surface 
exchanges on the surfaces F and F’ of the 
element A V and jl is an internal specific surface 
exchange on its lateral surface. Hence the total 
surface exchange for dt will be 

Volume releases in the interior of J C’ M ill bc 
presented on the same basis by the expression 

&A V -=-- ci,,bN dt. (1.3) 

Considering a continuous stream we have no 
other conditions which influence the change 01 
133 for the time dt. Then from the balance con- 
dition of all the mentioned values we shall have a 
general balance equation : 

after equating (1.2) with the sum of (I 2) and 
(1.4) and reduction by Al dt. Equation (1.5) 
relates the change with the time of the distribu- 
tion density of 3 along the stream and the change 
of internal surface exchange to volume release 
and external exchange along the co-ordinate 
in the given section of the stream at a given 
moment. 

Introduction of 3, representing the specific 
distribution of 3 over the mass, instead of 3!. 
seems to be more convenient in some applica- 
tions. It is evident that 3*’ and 3 will be related by 

3{, -: p3 (1.6) 

where p is the density in the volume element J 1,‘. 
Then under the same conditions external and 
internal exchanges are convenient to be expressed 
as sums consisting of convective and non-con- 
vective elements of these exchanges. 

Convective elements will be proportional to 
flow rates through these surfaces and to densities 
of the value being considered, i.e. 

!: ::. 34 -f- 2; _p[ :_: 7,[c’[ -: j1 (1.7) 

where 

c and cl are flow rates through F and AFt ; 
aa and 7~ are corresponding densities of .‘): 
r; and ~1 are specific second characteristics of 

non-convective contributions to exchange. 
In view of the said above after substituting 

(I .6) and (1.7) into equation (1.5) and intro- 
ducing the mass rate through section F by the 
formula 

tit pc,F‘ (I.XI 
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we obtain By means of the substantial derivative the latter 

da 
equation may be also expressed as follows: 

di+~$&Y?(!!!C+??) 
dti ri? ac ac 

+ “b” + ?lelp+.i! ; (1.9) 

dt -- at =pFat. (2.3a) 

(b) Assuming 3 to be equal to the sum of 

where 
specific kinetic and specific inner energies of a 
gas, i.e. 

c2 
3=-$-u 

2 (2.4) 

is a substantial derivative sign. 
It should be noted that if sV or 3 does not 

possess convective transfer, then expansion of 
(1.7) as well as (1.6) should not be used and, 
consequently, balance equation (1.9) is not 
suitable for such quantities. 

2. GENERAL EQUATION OF GAS DYNAMICS 

OF STREAMLINE MOTION 

According to (1.5) and (1.9) we may obtain 
fundamental equations of stream thermal gas 
dynamics by corresponding choice of aV and j or 
3 and i. 

(a) Really, considering distribution and change 
of masses along the stream at au = p and assum- 
ing in this case absence of non-convective 
exchanges (z = .?z = 0), we obtain from equa- 
tions (1.6) and (1.7) 

and internal non-convective exchange to be 
equal to the sum of conductive heat transfer 
and specific power of pressure forces 

i = q + pc. 

Using (2.2) we obtain from (1.9) 

(2.5) 

di* 1 aP _=- ~~__ 
dt p at 

bF !$ + ?I$? 

+ 5 5 + rlz - i*pm x 

P’F P F.+ 
‘F (2.6) 

where the stagnation enthalpy is equal to 

j*=f+j=$+u+fd-3+$. (2.7) 

Equation (2.6) is none other than generaliza- 
tion of the equation for stagnation enthalpy 
(the law of conservation of mechanocaloric 

3 = 1, j = pc, $1 = p1c1, ci, = pv (2.1) 
energy) known in gas dynamics [l] which in its 
turn, is obtained from equation (2.6) without 

where pl is the density of external convective external and internal exchange and release at 
exchange and pV is the specific mass rate of PV Z 4 = &W = 0; 2~ = ~2 = 0, Q = 0. 
internal release. Using these assumptions we get Under these conditions we have 
from (1.9) di* 1 ap p aln F 

apF ak 
-- _ ~_. _ (2.8) 

at + z = PvF + PK~X (2.2) 

dt p at + p at * 

For stationary motion 

after multiplication by pF. 
This is a generalized equation of continuity or 

di* = 0, or i* = z + i = const. (2.9) 

mass rates for streamline motion (the la< of Th’ 
mass conservation). 

is is the law of stagnation enthalpy conserva- 

In case of absence of release and external 
tion along the whole length of a stream when the 

exchange we transform equation (2.2) into the 
process is stationary without external heat 

conventional continuity equation of one-dimen- 
transfer and internal volume release. 

sional gas dynamics [l] 
In the considered general case from equation 

(2.6) we may assume 
apF ani 
-s- + Tl = 0. (2.3) % = h”; F =i,’ !J = (; + ul + ii) F (2.10) 

P 
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External non-convective 
represented as a sum of 
exchanges according to 

exchange may be 
thermal and energy 

iz x 

P ‘f 
-.~- qe:r: + tii,. (2.11) 

Internal exchange is defined by the Fourier law 

(2.12) 

Substituting these expressions into (2.6) we 
obtain the following relation 

In case of stationary motion equation (2.13) is 
simplified 

PLO x dqm dH, + (ir - i*) pc $- dl -I- dl~- 

at dl = c dt, where 

(2.14) 

(2.15) 

Thus, with stationary streamline motion the 
whole stagnation enthalpy of a gas will change 
along the stream because of the following cir- 
cumstances: internal heat conduction of a gas, 
heat release in chemical conversions, external 
non-convective heat and energy transfer and 
external convective exchange. Thus, for example, 
for uniflow combustion chambers with con- 
tinuous secondary air suppiy and fuel com- 
bustion at dHez = 0 (absence of external energy 
transfer), equation (2.4) presents the total 
balance of mechanocaloric energy, external 
exchange and internal release. 

(c) Note another interesting particular 
transformation of the equations obtained in 

points (a) and (bj. Consider (2.8) and (2.3aj 
together 

di” I +I p 2f; d/i? i (’ 
dl p i’! $.- & - jt ,J‘ 

i’f’ 
(2.16) 

~ultipiy the first equation by &. the second one 
by i* and sum them up. Then after some simple 
transformations we get 

where J* /hi* is the stagnation enthalpy flovv. 
(dj Now consider the purely thermodynamic 

quantity i.e. inner energy, assuming 9 == U. in 
this case, besides specific volume release, ri., 
includes the work of expansion of the initial 
volume. Dwell upon this work at greater length, 
It is evident that the change of the volume on 
the front surfaces F and F’ for the time dt may 
be determined by 

d V’ .-. dV =_ F’ dl’ -- Fd/ 

-7 (I;“(,’ __ /Y,) J, _ pFc+ ii! Jl d?. 

Thus the external work of expansion will bc 
equal to 

i’FC 
P iii 4/ dt (with an inverse sign). 

Further, volume heat release occurs because of 
both chemical and other internal conversions 
and of the work of friction. The Iatter may be 
represented by 

ph,Al dt ::: r,cXdldt (2.18j 

where 7e is the shear stress on the lateral surface 
of the stream. In this case the specific value of 
chemical conversion energy would not contain 
evident kinetic energy of this conversion. Thus, 
it is equal to 

h,, = il; --- A,.. (2,19j 

Then from the above we obtain 

;,AVdt = ph,AVdt + rec+ldt --p ?;;4/ dr 
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which after reducing by A V dt and rearranging, 
results in 

Ciu = -pp “d’: + p 5;; + phu 

is introduced into equation (2.21), the latter is 
reduced to 

di 1 dp p 8 In F 1 a(jF 8X; _.&fp at__‘ -_ 
pF 81 

P. -- p pn - $ #ml ; + 7eC -- . ; (2.20) + h, - i !f + (iz - i) ‘p” $ -+ h, + i&. (2.25) 

Other quantities entering equation (2.6) will be 
equal to i = 4 (conductive heat transfer), 
Al = plcl (specific enthalpy of external convec- 
tion) and it (x/F) = c&p (external convective 
heat transfer). After substituting all these 
expressions in (1.9), with regard to (2.2) and 
after reduction by p, we find 

+ (i2 - i) F . $-t h, + tje5. (2.21) 

The obtained equation relates the change of the 
inner energy and the specific power of gas ex- 
pansion work to all the forms of heat transported 
in algebraic sense to the element A V for the time 
dt with local change of the volume energy in 
this element (the first law of thermodynamics). 
When there is no external convection and when 
q = -A (W/t%), this equation is simplified 
according to the Fourier law and takes the form 
of 

p a ln F +hu+hr+9e~+p~. (2.22) 

The latter equation yields the well-known 
equation of one-dimensional heat conduction 

Thus we obtain a generalized equation of the 
first law of thermodyn~cs for enthalpy in a 
streamline gas flow. Subtracting (2.25) from 
(2.13) and assuming the difference of stagnation 
enthalpy and thermodynamic enthalpy to be 
equal to the specific kinetic energy, we get 

The obtained equation is none other than a 
generalized balance equation of mechanical 
energy and to obtain this equation as well 
as equation (2.25), new determinations of 
quantities, entering the basic balance equation, 
are not necessary. Thus, the two equations follow 
from (2.2), (2.13) and (2.21). In other words, the 
law of mechanical energy balance is a direct 
result of the laws for balance of masses, mechano- 
caloric energy and inner energy, i.e. it follows 
from the mass and total energy conservation law 
and the first law of thermodynamics for gases. 

It is easy to see that when external convective 
exchange and inner release are absent, the known 
generalized Lagrange-Bernoulli equation arises 
from equation (2.26) which after introduction 

dh, = h, dt = $ df; dH es = $ dl (2.27) 

takes the form of 
dT h aaT -=-- 
dt pcP ai= + h, + hr + hs (2.23) + f + dh, = ; $ dt + dH,. (2.28) 

when F and V = const. and u = CT. 
(e) If, instead of specific inner energy, the 

enthalpy 

i=uj_P 
P 

(2.24) 

This equality may be integrated and reduced to 

(2.29) 

provided that motion is stationary. 
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(f) As the third result of the obtained equa- 
tions, deduce the equation for specific entropy 
determined by the equalities 

Tds = du I- 17 dt. :-m di i’ dp. (2.30) 

Then from (2.21) and (2.25) it follows that 

release [in the fundamental equation (2.6)] 
would include Joule heat and Lorenz force work. 
Thus, for the stream element assumed to be 
Aat, with cross section F bh where h is the 
constant width of the stream and Ir is the height, 
dependent on the co-ordinate I s (the rect- 
linear axis of the stream), we find 

r&A V d t -- 

-$ hbAf dt - jBcbhAi dr -i- ph;,Fhl dr 

Equation (2.31) shows that its right side may be 
transformed into zero by special choice of values. 
We are naturally interested not in this specially 
chosen case ds = 0, but in general conditions 
when ds = 0. Therefore we exclude ail the terms 
of external convective exchange and inner 
release from (2.31). Then, assume q to be 
determined by the Fourier law. Under these 
conditions equation (2.31) may be represented 
as: 

for internal release. 
Hence 

'2 J .* 
d,, -= .-. -- ,iBc t. p/l,, 

rr (3.1) 

where j is the current density. ff is the con- 
ductivity, B is the magnetic induction equal to 
the product of magnetic permeability p and the 
magnetic field strength H. Substituting (3.1) 
into (2.6) we get 

ds x laT2 

dt ==-- i 1 
_ _ 

p Tdf 
_+ 5 + .! ‘i _A _iiT 

T i ) p ii/ T at 

h iiTalnF ,V 8 In F rjez 
--t. PT -pF ai + PT -i;t I- T. (2.32) 

The latter equation shows that when external 
and internal conductive heat exchanges are 
absent (A -= 0, Qpz -= 0) and when motion is 
stationary (ds/dt) = (/&/T) :-- 0 or when a 
stream is thermally insulated and there is no 
heat conduction, specific entropy of any gas 
element of a stationary stream increases with 
time, and if internal friction forces are also 
absent, entropy remains constant (the second 
law of thermodynamics). If these conditions are 
not observed, internal friction (dissipative func- 
tion of friction) and internal heat conduction 
(dissipative function of heat conduction) always 
produce two terms in the right side of equation 
(2.32). 

or when dt = (dsjc) and q L= -- X (iT/i7xi\-) 

Continuity equation (2.2) and the equation of 
mechanical energy balance (2.26) should be 
added to this equation. Then it takes the form of 

3. SOME SPECIFIC EQUATIONS OF STREAM 

GAS DYNAMICS FOLLOWING FROM GENERAL 

EQUATION 

Consider a stationary linear flow of a neutral when Lorenz forces are taken into account. A 
conducting gas in a direct magnetic field normal relation of the current density, velocity and 
to the flow. In this case the value of internal magnetic induction, that will be determined by 
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the problem conditions, should be added to 
the above equations. For instance [2] 

j = i(cBh - V&) (3.5) 

is assumed for a magnetic nozzle where V,, is 
the constant voltage drop in the external circuit. 

In the particular case when all the exchanges 
and releases, except electrical magnetic ones, are 
absent and when friction forces are neglected, 
the above equations for ideal gas are reduced to 
such a set of equations at f = (c2/2) 

K-l 
ti = ph 2/(2Q = const., 5 = $, p = K ip. 

(3.6) 

This set relates seven quantities p, p, 5, i, j and B 
which depend on x in the general case. Thus, for 
complete certainty two equations more should 
be added or two values should be restricted by 
certain conditions of their change along the 
x-axis. 

From these equations an expression for en- 
tropy change is easily obtained 

ds j B Ves 
dt=T p riz -(--4 

(3.7) 

and for pressure change 

g=(K- l)j(F-- $). (34 

From (3.7) and (3.6) we find that 

ds 1 C, 
di = KT Z Xi 

which after integrating yields 

s = S” + ,“, In ;l. (3.9) 
0 

On the other hand, entropy for an ideal gas is 
given by the following equation, [I]: 

S=So+K_l -“(ln g) + In (i)-(K-l). (3.10) 

Comparison of (3.9) and (3.10) obtains such a 
relation between i and p 

i i p -(K-l) 
-: = --. - 
10 0 i. f. 

which is possible only at p = p. = const., i.e. 
when the process is isobaric. 

All the above shows that fundamental 
equations and consequences of stream gas 
dynamics would be derivable from the general 
balance equation for any mechanophysical 
value. If the present approach is assumed, 
fundamental equations follow from mass laws, 
total energies and the first law of thermo- 
dynamics or, in other words, the general case of 
one dimensional stream seems to be possible to 
expound without using the conventional equa- 
tion of hydrodynamics and Newton laws. These 
equations allow one to obtain the one-dimen- 
sional equation of heat conduction and magnetic 
gas dynamics. 
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Abstract-It is shown in the paper that fundamental equations of stream gas dynamics may be derived 
from the general balance equation for any mechanophysical value. Fundamental equations follow 
from mass laws, total energies and the first law of thermodynamics. These equations make it possible 

to obtain a one-dimensional equation of heat conduction and magnetic gas dynamics. 

R&urn&--On montre dans cet article que les Cquation fondamentales de la dynamique des Bcoulements 
gazeux peuvent &tre dCduites de 1’Cquation g&&ale d’kquilibre pour toute valeur m&u&physique. 
Les 6quations fondamentales sont Btablies 51 partir des lois de conservation de la masse, de l’tnergie 
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et du premier principe de thermodynamique. Ces equations permettent d’obtenir une equation 
unidimensionnelle pour la conduction thermique et la magnetohydrodynamique. 

Zusammenfassung-In der Arbeit wird dargelegt, dass aus der allgemeinen Gleichgewichtsbeziehung 
fbr beliebige mechanisch-physikalische Werte grundsatzliche Gleichungen der Gasdynamik abgeleilet 
werden k&men. Grundgleichungen ergeben sich aus den Beziehungen fur Masse und Gesamtenergie 
sowie dem ersten Hauptsatz der Thermodynamik. Diese Beziehungen fiihren auf eine eindimensionale 

Gleichung fur Warmeleitung und Magnetogasdynamik. 


